- Référence : 0A039G
- Durée : 1 jour (7h)
- Lieu : Au choix. À distance ou en présentiel, à Paris ou en Régions
750€ HT
Choisir une date et RéserverVous pouvez suivre cette formation en direct depuis votre domicile ou votre lieu de travail. Plus d'informations sur notre solution de classe à distance...
This course presents advanced models available in IBM SPSS Modeler. The participant is first introduced to a technique named PCA/Factor, to reduce the number of fields to a number of core factors, referred to as components or factors.
The next topics focus on supervised models, including Support Vector Machines, Random Trees, and XGBoost. Methods are reviewed on how to analyze text data, combine individual models into a single model, and how to enhance the power of IBM SPSS Modeler by adding external models, developed in Python or R, to the Modeling palette.
Public :
This training targets especificaly the data scientists, the business analysts, and eventually experienced users of IBM SPSS Modeler who want to learn about advanced techniques in the software.
Prérequis :
Knowledge of your business requirements.
Required : IBM SPSS Modeler Foundations (V18.2) course (0A069G/0E069G) or equivalent knowledge of how to import, explore, and prepare data with IBM SPSS Modeler v18.2, and know the basics of modeling.
Recommended : Introduction to Machine Learning Models Using IBM SPSS Modeler (V18.2) course (0A079G/0E079G), or equivalent knowledge or experience with the product about supervised machine learning models (CHAID, C&R Tree, Regression, Random Trees, Neural Net, XGBoost), unsupervised machine learning models (TwoStep Cluster), and association machine learning models such as APriori.
Taxonomy of models
Overview of supervised models
Factor Analysis basics
Principal Components basics
Assumptions of Factor Analysis
Key issues in Factor Analysis
Improve the interpretability
Nearest Neighbor Analysis basics
Key issues in Nearest Neighbor Analysis
Support Vector Machines basics
Random Trees basics
XGBoost basics
Generalized Linear Models
Available distributions
Available link functions
Combine supervised models
Identify ensemble methods for categorical targets
Identify ensemble methods for flag targets
Identify ensemble methods for continuous targets
Meta-level modeling Use external machine learning models
IBM SPSS Modeler Extension nodes
Text Mining and Data Science
Text Mining applications
Modeling with text data
Formations Informatique
et Management
en ligne à ce jour
+
Stagiaires dans nos salles
de cours sur
l'année
%
De participants satisfaits
ou très satisfaits de nos
formations
Formateurs experts
validés par
PLB